Make it work

Today there was not that much left to do – it was basically tinkering, and making the design look better, and work more effectively. Our initial plan was to use the breadboard inside the brush, but Lars pointed out its weaknesses – we should loose the breadboard, because the way it was connected could easily lead to short circuit. Besides it takes too much space. So we did as he suggested – we soldered all the parts – the photocell sensor to the resistor, and to jumper wires, and insulated the exposed wires with heat-shrink tubing. We made two sets of photocell sensors – and these sets were also connected to each other – the positive part from one, with the negative part from the other. Why that? Why positive from one with negative from the other? Because we wanted to invert the behaviour of one of the sensors, so the best thing would do it on the circuit.


After soldering, the hairbrush looked much better, and we did not have any more problems with short circuit, malfunctioning sensors. We also glued a frame made of carton package around the brush in order to make it look nicer and more stable.


Finished brush

After that we started sketching with different sounds, filters and variables, trying to figure out what would work better. We did not have many options to choose from when it comes to audio files. So we chose the less scary one, and edited /cropped it in order to sound better. One of the sensors – the one in the middle – was linked to res, which implies its sole function was to trigger the sound. The other sensor, to the side, was connected to frequency and responsible for the different outputs we would get depending on how we brush our hair.

Here is the finished product:

When we were done with all the sketching, we started to discuss interaction attributes  – ambiguity, tightness and openness. We felt that our hairbrush was ambiguous enough in terms of information because the sounds that came from the brush was unpredictable and when brushing or moving the brush in different directions you would get different outputs. Of course we could have explored the other two types of ambiguity – context and relationship – but we wanted to leave some room for clearness in the interaction with the hairbrush, in the meaning that we knew there would be some kind of sound when it was moved, but we did not know WHAT sound it would come over time, since it depends on how you brush your hair and even on your hair colour, since the sensors showed to be very sensitive to clothing colour and hair.

When it comes to tightness, it was the first attribute we succeeded with – the hairbrush reacted directly when it was approaching our hair – The closer the brush would get to the hair, the more intense the sound would get – so we can say that tightness is not reduced to immediateness aspect, it is also connected to the closeness aspect – as if the hairbrush was the extension of your hand. When it comes to the openness aspect, there is a lot of room for discussion – in theory our hairbrush is open – it can be used anyhow, anytime, anywhere, by everybody. But if we put the brush in a context, we begin to see its limitations in terms of openness  – is it okay to brush your hair during a business meeting? If you follow the prevailing social norms, you would not even consider this possibility. Can you use this hairbrush as a weapon? There are no physical constraints to that, but what about moral, behavioural ones? And hairbrushes were not intended to be used as a weapon, from a design point of view.

When it comes to bodily experience, the way the hairbrush sounded could send you a signal telling you when to brush your hair more slowly, carefully, and that would affect your behaviour. If you do as you are “supposed to” , then you will get a calmer sound as a feedback, which might also lead to a relaxed state of mind.